Introduction

Dependent types are an extension to traditional types (such as the one seen in the simply-typed lambda
calculus) to make them more expressive. Specifically, a type system is said to be dependent if it allows
types to depend on terms.

This type theory is based on Per Martin-Lof’s original type theory, which was posited as an alternative
foundation for mathematics. In it, we can encode any constructive mathematical theorem.

In this assignment, you’ll be implementing a small language which uses dependent types, building up
the language to include new features, then ultimately proving some simple theorems using the language.
The next few sections define the language formally, and it will be your task to implement the language
yourself.

Syntax
e,T =1 Variable reference
| % The type of types
| (x:7) = T Dependent function types (AKA TI-types)
| Max 7). eq Function introduction
| e1 es Function elimination
| N The natural number type
| 0| succe Natural number introduction
| elimNat e; es €3 ey Natural number elimination

A few bits of syntactic sugar:

e We occasionally use the name °_’ to bind values we don’t care about. This name should not appear
in the variable reference position.

e We can elide names in II-types if they are not bound in the type’s codomain: e; — es = (_ :e1) — es.

e We write the function arrow as right-associative: (x :e;) = (z:e3) > e3 = (z:e1) = ((v:e3) —
63).

e We write function elimination as left associative: e; ey e3 = (e; e2) es.

e We write a natural number as the repeated application of succ to 0. As an example, we say that
4 = succ(succ(succ(succ 0))).

Note: a-equivalence

In the above syntax, we use the non-terminal x to stand for any variable. In general, the particular variable
names we choose for a closed term should not matter. For example, A(z : N).z = A(y : N).y. This property
— that consistently renaming a parameter and all of its occurrences does not change the meaning of a term
— is called a-equivalence. In the following sections, we often make the implicit assumption that terms are
renamed to avoid collision.



Meta-Functions

Environments

Type-checking is performed relative to a environment, also called a context, which is often named I". An
environment is a list of type/variable pairs, written (z1 : 71,22 : T2, ...). We write I'(x) to mean the type
which is most recently associated with the variable x in the environment I'. Note: this is not necessarily
defined for all variables.

F(af:)—{T %ffi(...,$:.7')
(..)x) T =(..,21:7)and 2y # 2

Free Variables

We say that a variable is free in some term when that variable occurs in the term, but is not bound by a
binding term (such as a A or II term). We write the set of free variables present in a term e as FV(e).

{z} ife=x
FV(1) U (FV(12) — {z}) ife=(z:7)—>mn
FV(r) U (FV(e1) — {z}) ife=M\xz:7).e;

FV(e) = FV(e1) UFV(es) if e=e; ey
FV(e1) if e = succ e;
FV(e1) UFV(ea) UFV(e3) UFV(eq) if e =elimNat e €3 e3 ey
0 otherwise

Capture-Avoiding Substitution

When evaluating application, we often use a notion of substitution - we replace all occurrences of the
argument variable with the argument value. This is a suitable mental model for many programs, but a
naive notion of substitution can lead to odd bugs. We write e;[x <+ e3] to mean “the term e, but with
all free occurrences of = replaced with ey”. Note: ej[z <+ €] is not necessarily defined for all terms - some
may require rewriting in terms of a-equivalence.

(

€ ife; =x
(21 : [z < e3]) = Tolx 1 €9 ifer=(r1:71) > n
and x1 & {x} U FV(es)
Ay @ T[T = es]).e3]T < e if e; = AN(xy : 71y).€3
e[ < eg) = and xy & {x} U FV(eq)
eslr < es] eqfr < 9] ife; =e3 ey
succ ez < eg) if e; = succ e3
elimNat eg[r < €3] e[ < eo] es]x < es] eglr < es] if e; = elimNat e3 ey €5 eg
e1 otherwise

\

Semantics

There are two relevant judgments, the typing relation and the reduction relation. These two judgment
give a semantics to how type-checking and evaluation should work, respectively.



Typing Relation

Our typing judgment takes the form , read as “environment I' types e as 7.

Ix)=r71 7% Do:mbmix
——— TYPE-VAR-REF —— TYPE-* Type-II
Fkz:7 [Fo*:x PE(z:m) > 1 *
k7% Fx:mbm:ix Fx:mbey: * 'kFe:
n RERNL RREC RN TYPE-A nwon S TyYPE-EVAL
FEXNx:m)e:(v:1) =7 I'kFe:mn
I'kej: : — I'kFes:
! (x Tl) & 2N TYPE-APP
['F ey ey mfr < ey
I'Fe: N
——  TYPE-N —  TYPE-0 TYPE-succ
I'EN:x I'FO0: N I'Fsucce: N
I'Fe :N— % 'Fey:e; 0 F'kFes:(x:N)—e x— e (succ ) I'Fes: N
TYPE-elimNat
I'F elimNat e e €3 €4 : €1 €4

Example: Polymorphic Identity Function

The following is a derivation which types the polymorphic identity function id, defined as follows:

id: (A:%x) 2 A= A
id=ANA:%)\Nz: A).x

We can prove that this type is accurate using a derivation:

TYPE-%
%%

(A:%)(A) =« (A%, A)(A) =«

TYPE-VAR-REF

TYPE-VAR-REF
A:xF A% Aix, AFA: %
= Type-II
A:xFA—= A%
(A:*)(A):*T VARR
A:xF A% YPEmVAR-RER

(A:%,x: A)(A) =*

(A:x,z:A)(z)=A
A:xx:AFA: %

A:xx:AFx: A
TYPE-A
A:xFXNz:A)ax: A A
TYPE-A
FAMA:%). ANz:A).2:(A:x) > A= A

TYPE-VAR-REF

TYPE-VAR-REF

Reduction Relation

Our reduction relation takes the form [e; ~ €], which can be read as “e; can be reduced to e by one step

of reduction”. We often also talk about the transitive closure of this relation, written , read as
“e1 can be repeatedly reduced to ey, which can be reduced no further”.



This may seem like a lot of rules, but only the first three do any interesting work (these are called

“computational rules”). The rest just thread through reduction to various subterms (these are called

“congruence rules”).

EvAL-elimNat-0

EvaL-AprpP

(A :71).e1) ea ~ e1[x < eq] elimNat e; ey e3 0 ~> ey

EvAL-elimNat-succ

elimNat e; ey e3 (succ e4) ~~ e3 e4 (elimNat eg ey e3 ey

T ~ T3

T1 ~> To
EvAL-II-CODOMAIN

EVAL-II-DOMAIN

(x:m) > T3~ (x:7) > 13 (x:m) >~ (i) =713

€1 ~ €2 €1 ~ €2 €1 ~ €2
EvaL-A-Boby ——— EVAL-RATOR —— EVAL-RAND
€1 €3 ~ €2 €3 €3 €1 v €3 €2

Mz 7y).eq ~ Az 2 7).e9

€1 ~ €5

€1 v €9
EvAL-elimNat-MOT

EvVAL-succ

sSucc e; ~» succ ey elimNat e; ey ez e4 ~» elimNat e5 ey €3 €4

€9 ~ €5
EvAL-elimNat-BASE

elimNat e; ey e3 e4 ~» elimNat e e5 e3 ey

€3 v €5
EvAL-elimNat-IND

elimNat e ey e3 e4 ~» elimNat e ey €5 €4

€4 > €5
EvAL-elimNat-TARGET

elimNat e; ey e3 e4 ~~» elimNat ey ey e3 €5



